

MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES

Philip Jonathan, Kevin Ewans, David Randell, Yanyun Wu

philip.jonathan@shell.com

www.lancs.ac.uk/~jonathan

Wave Hindcasting & Forecasting Workshop,
Banff, October 27 - November 1, 2013

Outline

1 Background

- Motivation
- Australian North West Shelf

2 Extreme value analysis: challenges

3 Non-stationary extremes

- Model components
- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

4 Current developments

Contents

1 Background

- Motivation
- Australian North West Shelf

2 Extreme value analysis: challenges

3 Non-stationary extremes

- Model components
- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

4 Current developments

- **Rational** design an assessment of marine structures:
 - Reducing **bias** and **uncertainty** in estimation of structural reliability
 - Improved understanding and communication of risk
 - For new (e.g. floating) and existing (e.g. steel and concrete) structures
 - Climate change
 - **Whole-basin** analysis: non-stationary analysis for 1000s of locations with covariates
- Other applied fields for extremes in industry:
 - Corrosion and fouling
 - Economics and finance

Australian North West Shelf

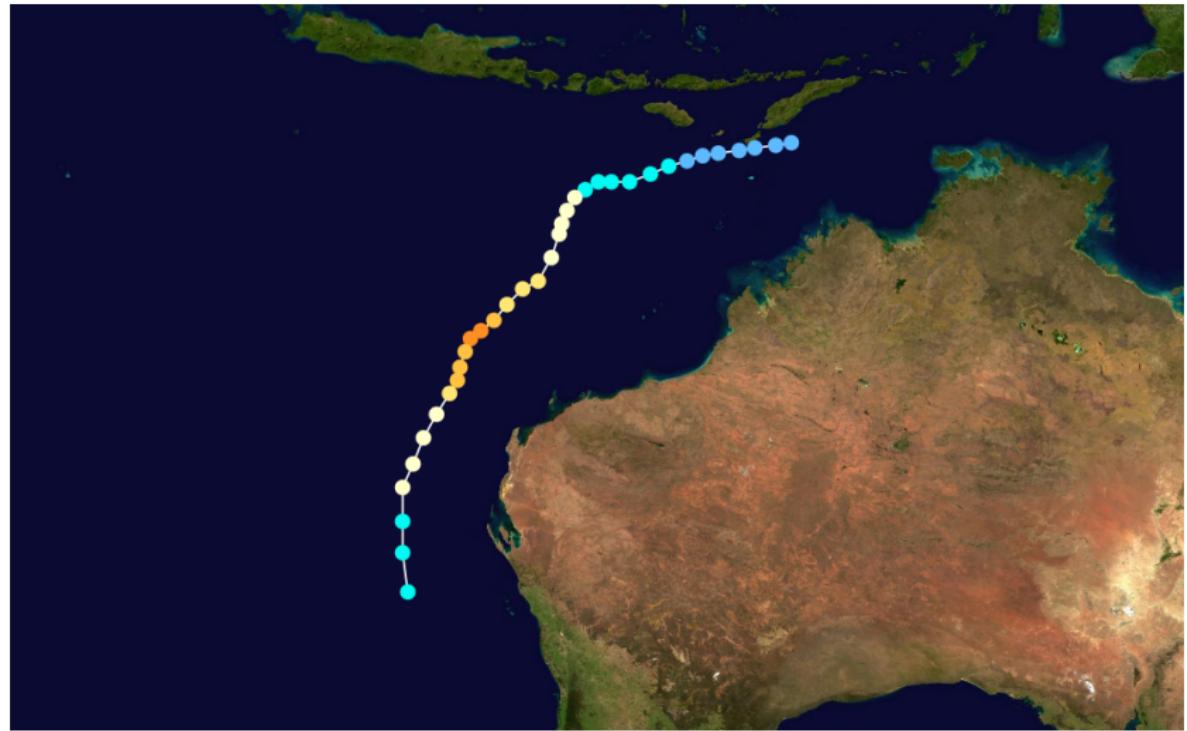
Australian North West Shelf

- Model **storm peak significant wave height H_s**
- Wave climate is dominated by westerly **monsoonal swell** and **tropical cyclones**
- Cyclones originate from Eastern Indian Ocean, Timor and Arafura Sea

- Sample of **hindcast** storms for period 1970-2007
- 33×33 rectangular spatial grid over $4^\circ \times 4^\circ$ longitude-latitude domain
- **Spatial** and **directional** variability in extremes present
- **Marginal** spatio-directional model

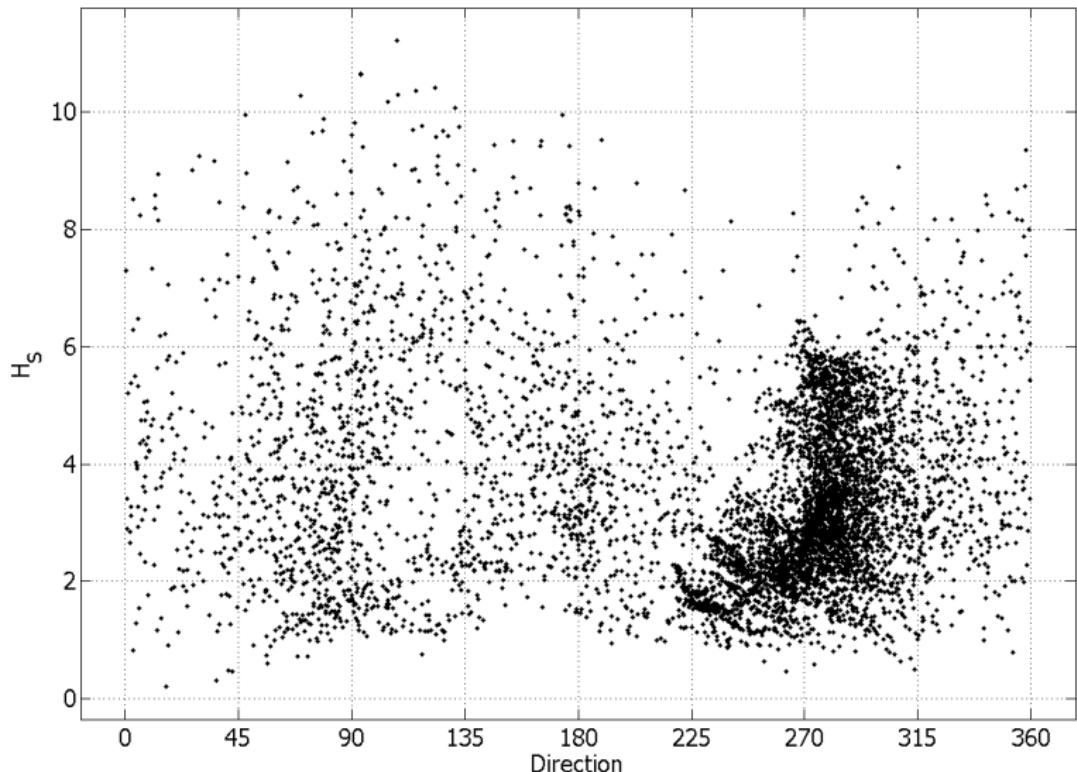
Cyclone Narelle January 2013: spatio-directional

Cyclone Narelle January 2013: cyclone track

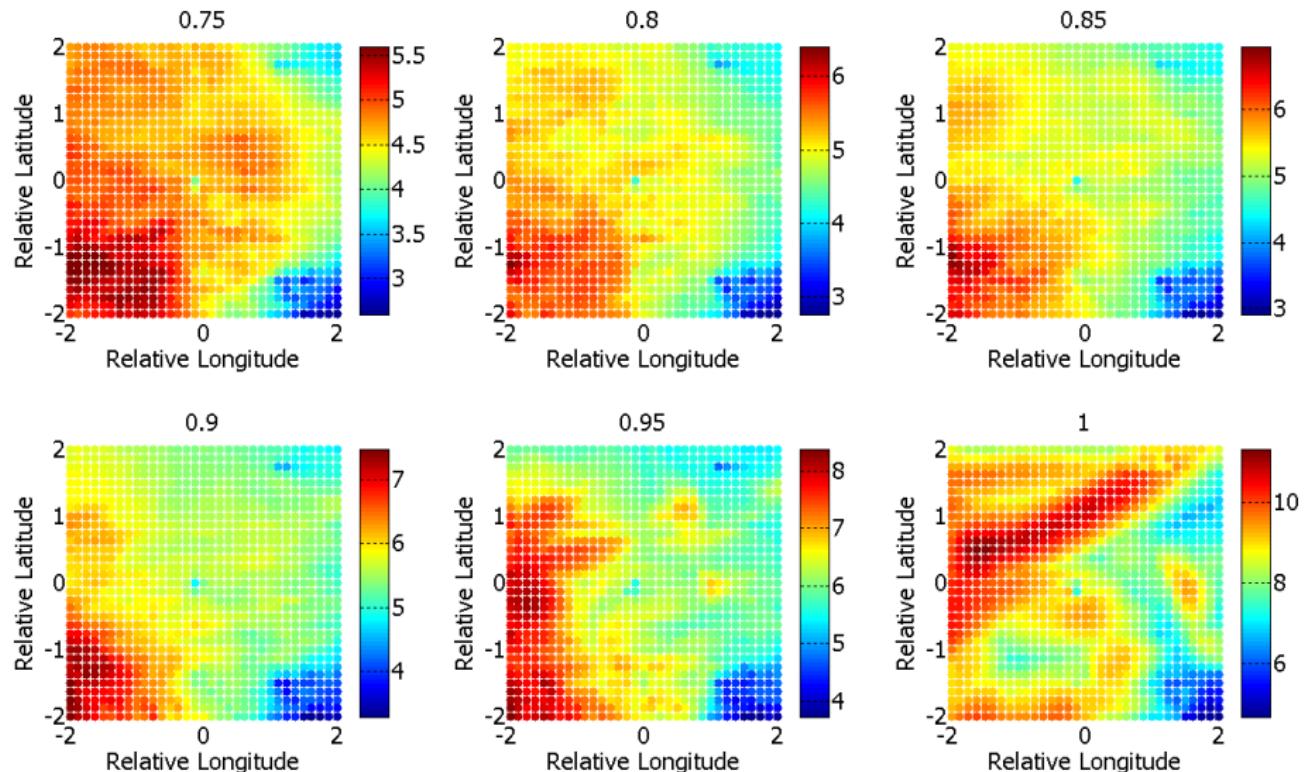


Storm peak H_s by direction for all locations

Raw data: 6156 events



Quantiles of storm peak H_S spatially for all directions



Contents

1 Background

- Motivation
- Australian North West Shelf

2 Extreme value analysis: challenges

3 Non-stationary extremes

- Model components
- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

4 Current developments

Extreme value analysis: challenges

- **Covariates and non-stationarity:**
 - Location, direction, season, time, water depth, ...
 - Multiple / multidimensional covariates in practice
- **Cluster** dependence:
 - Same events observed at many locations (pooling)
 - Dependence in time (Chavez-Demoulin and Davison 2012)
- **Scale** effects:
 - Modelling X or $f(X)$? (Reeve et al. 2012)
- **Threshold** estimation:
 - Scarrott and MacDonald [2012]
- **Parameter** estimation
- **Measurement** issues:
 - Field measurement uncertainty greatest for extreme values
 - Hindcast data are simulations based on pragmatic physics, calibrated to historical observation

Extreme value analysis: **multivariate** challenges

- **Componentwise maxima:**

- \Leftrightarrow max-stability \Leftrightarrow multivariate regular variation
- Assumes all components extreme
- \Rightarrow Perfect independence or asymptotic dependence **only**
- Composite likelihood for spatial extremes (Davison et al. 2012)

- **Extremal dependence:** (Ledford and Tawn 1997)

- Assumes regular variation of joint survivor function
- Gives more general forms of extremal dependence
- \Rightarrow Asymptotic dependence, asymptotic independence (with +ve, -ve association)
- Hybrid spatial dependence model (Wadsworth and Tawn 2012)

- **Conditional extremes:** (Heffernan and Tawn 2004)

- Assumes, given one variable being extreme, convergence of distribution of remaining variables
- Allows some variables not to be extreme
- Not equivalent to extremal dependence

- **Application:**

- *... a huge gap in the theory and practice of multivariate extremes ...*
(Beirlant et al. 2004)

Contents

1 Background

- Motivation
- Australian North West Shelf

2 Extreme value analysis: challenges

3 Non-stationary extremes

- Model components
- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

4 Current developments

Model components

- Sample $\{\dot{z}_i\}_{i=1}^n$ of n storm peak significant wave heights observed at locations $\{\dot{x}_i, \dot{y}_i\}_{i=1}^n$ with storm peak directions $\{\dot{\theta}_i\}_{i=1}^n$
- Model components:
 - ① **Threshold** function ϕ above which observations \dot{z} are assumed to be extreme estimated using quantile regression
 - ② **Rate of occurrence** of threshold exceedances modelled using Poisson model with rate $\rho(\stackrel{\Delta}{=} \rho(\theta, x, y))$
 - ③ **Size of occurrence** of threshold exceedance using generalised Pareto (GP) model with shape and scale parameters ξ and σ

Model components

- Rate of occurrence and size of threshold exceedance functionally **independent** (Chavez-Demoulin and Davison 2005)
 - Equivalent to non-homogeneous Poisson point process model (Dixon et al. 1998)
- Smooth functions of covariates estimated using penalised B-splines (Eilers and Marx 2010)
 - Slick linear algebra (c.f. generalised linear array models, Currie et al. 2006)
- $\sim 4 \times 33 \times 33 \times 32 \sim 10^5$ parameters to estimate
 - Computational efficiency essential

Penalised B-splines

- Physical considerations suggest model parameters ϕ, ρ, ξ and σ vary smoothly with covariates θ, x, y
- Values of $(\eta =) \phi, \rho, \xi$ and σ all take the form:

$$\eta = B\beta_\eta$$

for **B-spline** basis matrix B (defined on index set of covariate values) and some β_η to be estimated

- Multidimensional basis matrix B formulated using Kronecker products of marginal basis matrices:

$$B = B_\theta \otimes B_x \otimes B_y$$

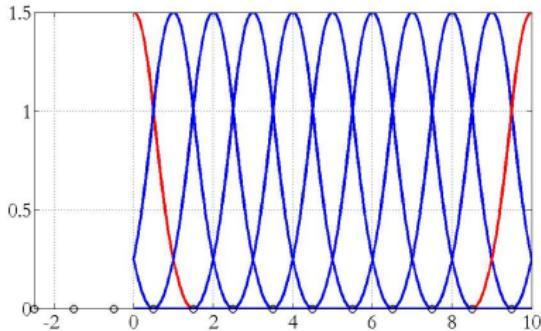
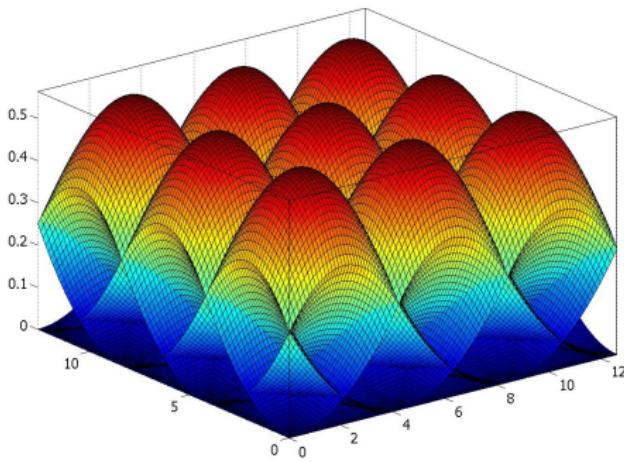
- Roughness R_η defined as:

$$R_\eta = \beta'_\eta P \beta_\eta$$

where effect of P is to difference neighbouring values of β_η

Penalised B-splines

- **Wrapped** bases for periodic covariates (seasonal, direction)
- **Multidimensional** bases easily constructed. **Problem size** sometimes prohibitive
- Parameter **smoothness** controlled by roughness coefficient λ : **cross validation** or similar chooses λ optimally



Quantile regression model for extreme value threshold

- Estimate smooth quantile $\phi(\theta, x, y; \tau)$ for non-exceedance probability τ of z (storm peak H_S) using quantile regression by minimising **penalised** criterion ℓ_ϕ^* with respect to basis parameters:

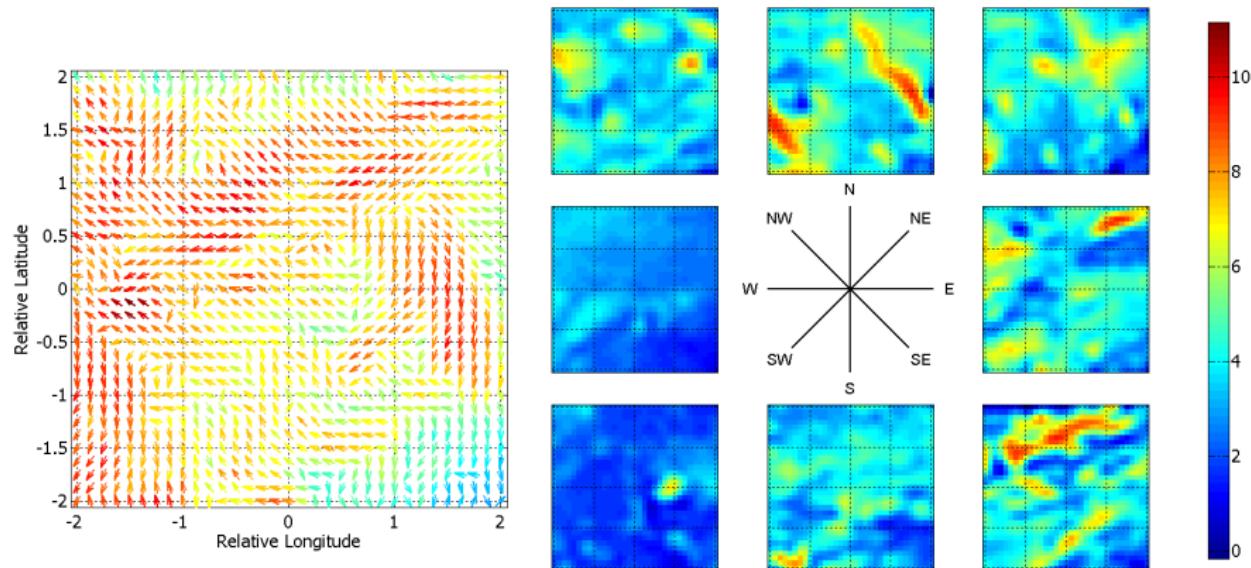
$$\ell_\phi^* = \ell_\phi + \lambda_\phi R_\phi$$

$$\ell_\phi = \left\{ \tau \sum_{r_i \geq 0}^n |r_i| + (1 - \tau) \sum_{r_i < 0}^n |r_i| \right\}$$

for $r_i = z_i - \phi(\theta_i, x_i, y_i; \tau)$ for $i = 1, 2, \dots, n$, and **roughness** R_ϕ controlled by roughness coefficient λ_ϕ

- (Non-crossing) quantile regression formulated as linear programme (Bollaerts et al. 2006)

Spatio-directional 50% quantile threshold



lhs: direction of highest threshold per location
rhs: spatial threshold for 8 (semi-) cardinal directions

Poisson model for rate of threshold exceedance

- Poisson model for rate of occurrence of threshold exceedance estimated by minimising roughness penalised log likelihood:

$$\ell_\rho^* = \ell_\rho + \lambda_\rho R_\rho$$

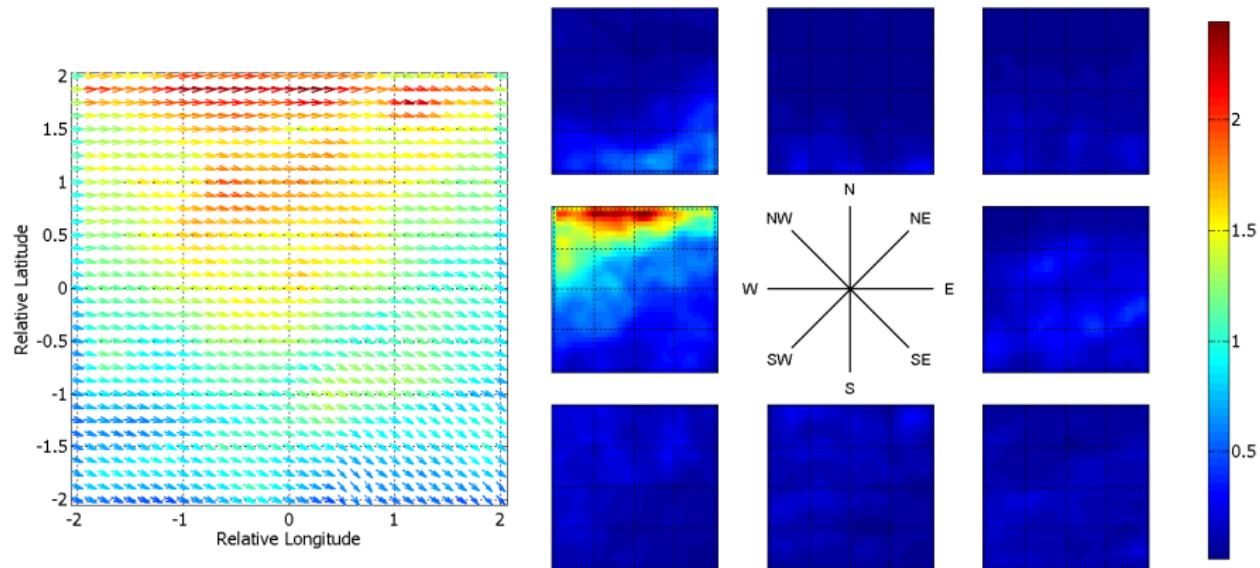
- (Negative) penalised Poisson log-likelihood (and approximation):

$$\ell_\rho = - \sum_{i=1}^n \log \rho(\theta_i, x_i, y_i) + \int \rho(\theta, x, y) d\theta dx dy$$

$$\hat{\ell}_\rho = - \sum_{j=1}^m c_j \log \rho(j\Delta) + \Delta \sum_{j=1}^m \rho(j\Delta)$$

- $\{c_j\}_{j=1}^m$ counts of threshold exceedances on index set of m ($>> 1$) bins partitioning covariate domain into intervals of volume Δ
- λ_ρ estimated using cross validation or similar (e.g. AIC)

Spatio-directional rate of threshold exceedances



lhs: direction of highest rate per location
rhs: spatial rate for 8 (semi-) cardinal directions

Generalised Pareto model for size of threshold exceedance

- Generalise Pareto model for size of threshold exceedance estimated by minimising roughness penalised log-likelihood:

$$\ell_{\xi, \sigma}^* = \ell_{\xi, \sigma} + \lambda_\xi R_\xi + \lambda_\sigma R_\sigma$$

- (Negative) conditional generalised Pareto log-likelihood:

$$\ell_{\xi, \sigma} = \sum_{i=1}^n \log \sigma_i + \frac{1}{\xi_i} \log \left(1 + \frac{\xi_i}{\sigma_i} (z_i - \phi_i) \right)$$

- Parameters: **shape** ξ , **scale** σ
- Threshold ϕ set prior to estimation
- λ_ξ and λ_σ estimated using cross validation or similar. In practice set $\lambda_\xi = \kappa \lambda_\sigma$ for fixed κ

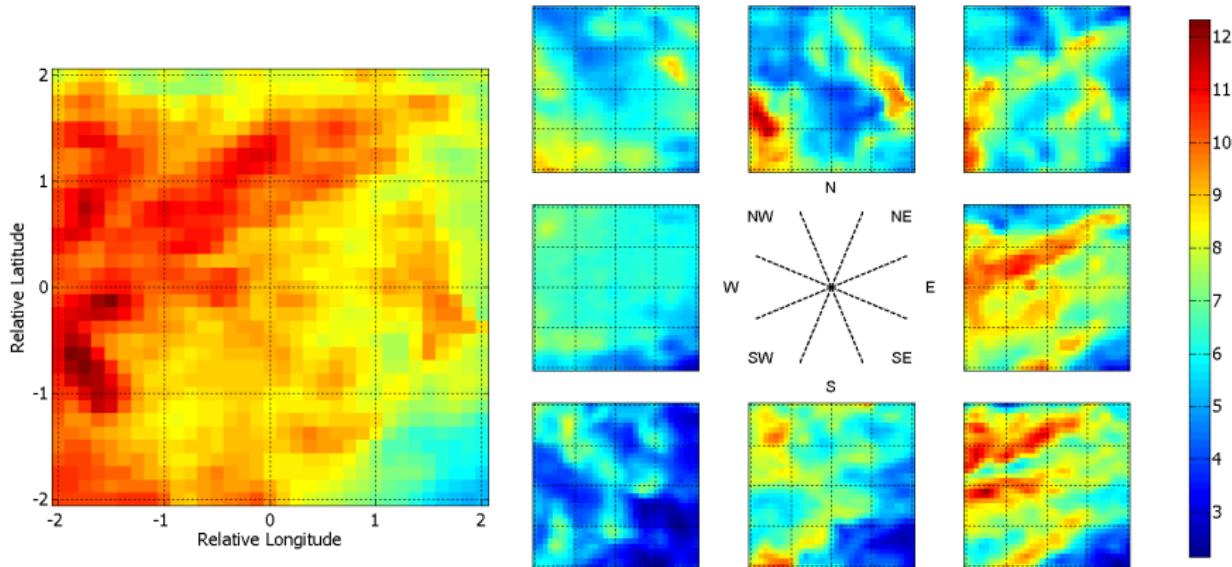
Return values

- Estimation of return values by simulation under model
 - Spatio-directional octants
 - Sample number of events in period, directions of events, sizes of events
- Alternative: closed form function of parameters
 - Return value z_T of storm peak significant wave height corresponding to return period T (years) evaluated from estimates for ϕ, ρ, ξ and σ :

$$z_T = \phi - \frac{\sigma}{\xi} \left(1 + \frac{1}{\rho} \left(\log \left(1 - \frac{1}{T} \right) \right)^{-\xi} \right)$$

- Interpretation **problematic**
- z_{100} corresponds to 100-year return value, denoted H_{S100}

Spatio-directional 100-year return value H_{S100} from simulation



lhs: omni-directional spatial; rhs: directional octant spatial

Contents

1 Background

- Motivation
- Australian North West Shelf

2 Extreme value analysis: challenges

3 Non-stationary extremes

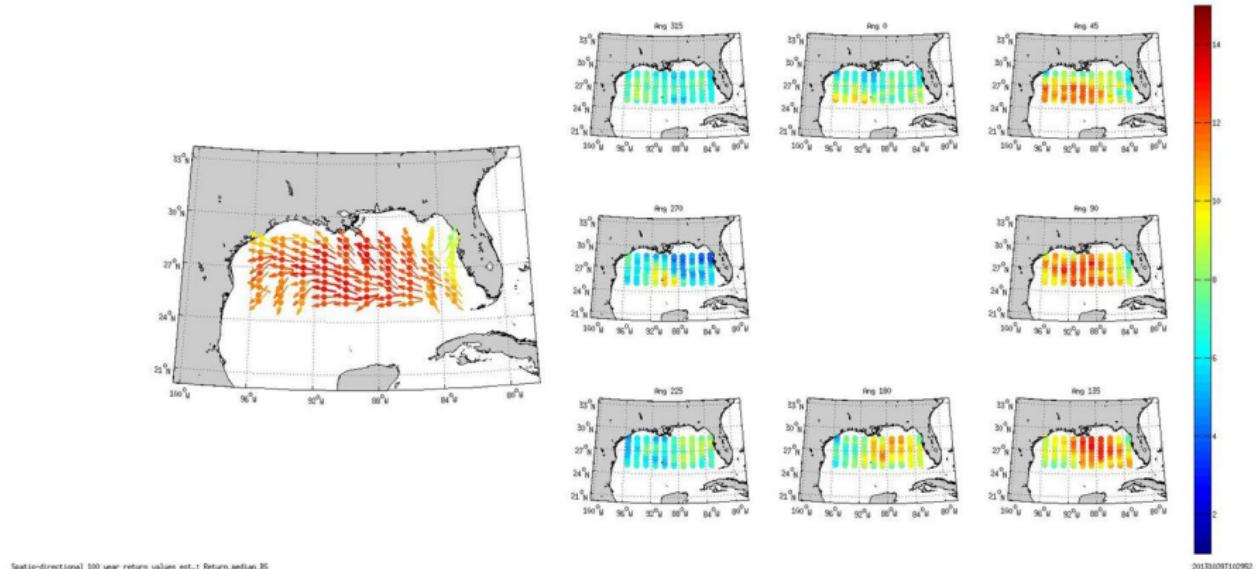
- Model components
- Penalised B-splines
- Quantile regression model for extreme value threshold
- Poisson model for rate of threshold exceedance
- Generalised Pareto model for size of threshold exceedance
- Return values

4 Current developments

Current developments

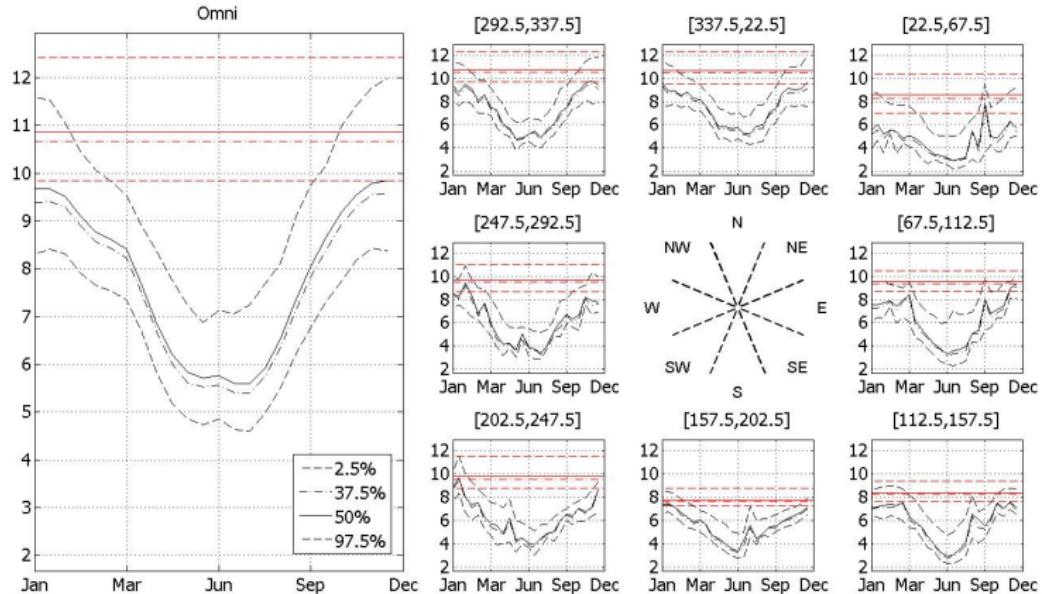
- Non-stationary **marginal** extremes
 - Spatio-directional, seasonal-directional and spatio-seasonal-directional
- Computational efficiency
 - **Sparse** and **slick** matrix manipulations (e.g. linear array methods)
 - **Parallel** implementation
- Incorporating uncertainty
 - **Bootstrapping** including threshold uncertainty
 - **Bayesian** penalised B-splines(Nasri et al. 2013, Oumow et al. 2012)
- Spatial dependence
 - Composite likelihood: model componentwise maxima
 - Censored likelihood: block maxima → threshold exceedances
 - Hybrid model: **full range** of extremal dependence
- Interpretation within **structural design framework**
- Non-stationary **conditional** extremes

Spatio-directional 100-year H_S for GoM



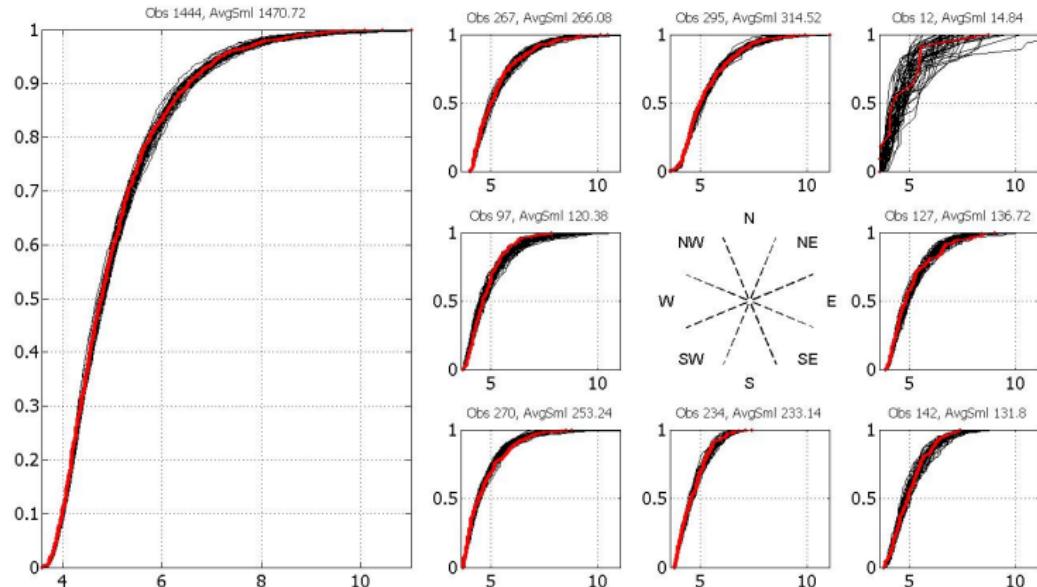
lhs: omni-directional spatial; rhs: spatial for 8 (semi-) cardinal directions

Seasonal-directional 100-year H_s for North Sea



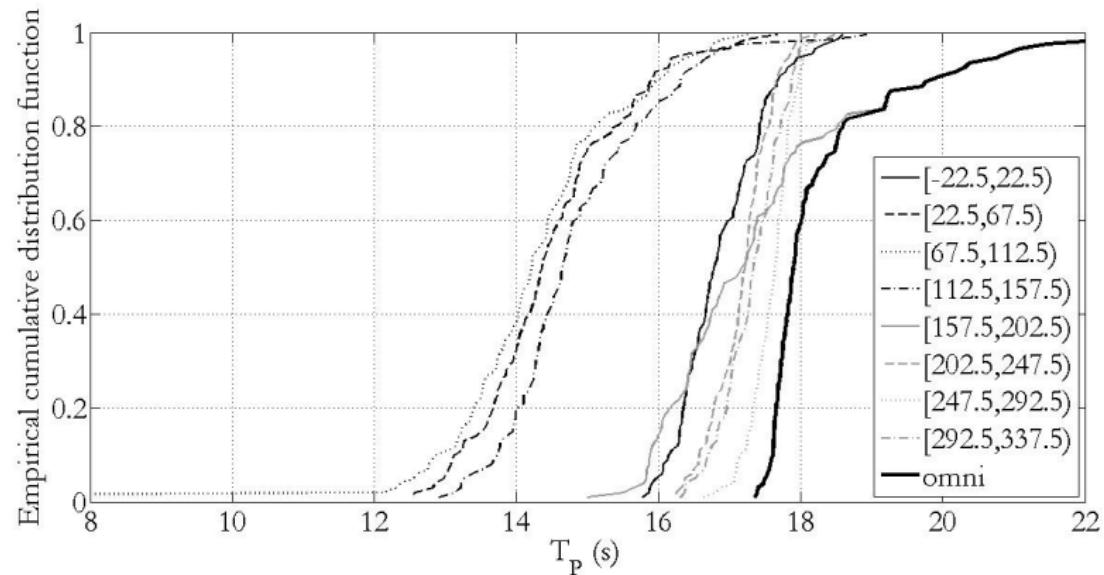
lhs: omni-directional seasonal; rhs: seasonal for 8 directional sectors
bootstrap uncertainty intervals encompass all analysis steps

Seasonal-directional H_S diagnostics



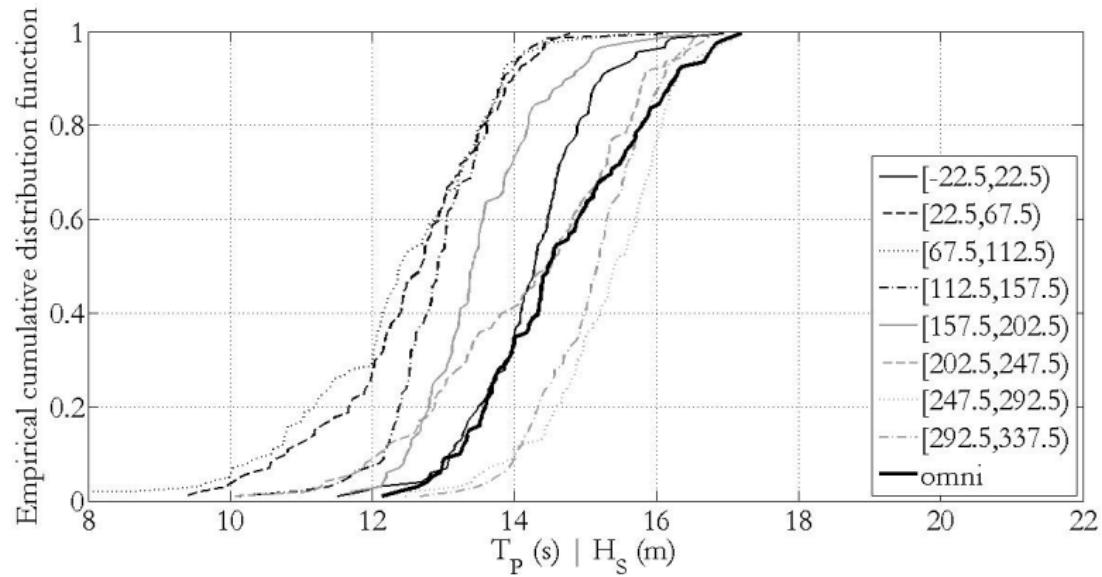
For period of data, comparison of actual (red) and multiple simulated (omni-) directional cumulative distribution functions

Directional conditional extremes of T_P given 100-year H_S for North Sea



Omni-directional and sector **marginal** distributions of 100-year T_P independent of 100-year H_S

Directional conditional extremes of T_P given 100-year H_S for North Sea



Omni-directional and sector **conditional** distributions of T_P given 100-year H_S using extension of model of Heffernan & Tawn

References

K Bollaerts, P H C Eilers, and M Aerts. Quantile regression with monotonicity restrictions using P-splines and the L1 norm. *Statistical Modelling*, 6:189–207, 2006.

V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample extremes. *J. Roy. Statist. Soc. Series C: Applied Statistics*, 54:207, 2005.

V. Chavez-Demoulin and A.C. Davison. Modelling time series extremes. *REVSTAT - Statistical Journal*, 10:109–133, 2012.

I. D. Currie, M. Durban, and P. H. C. Eilers. Generalized linear array models with applications to multidimensional smoothing. *J. Roy. Statist. Soc. B*, 68:259–280, 2006.

A. C. Davison, S. A. Padoan, and M. Ribatet. Statistical modelling of spatial extremes. *Statistical Science*, 27:161–186, 2012.

J. M. Dixon, J. A. Tawn, and J. M. Vassie. Spatial modelling of extreme sea-levels. *Environmetrics*, 9:283–301, 1998.

P H C Eilers and B D Marx. Splines, knots and penalties. *Wiley Interscience Reviews: Computational Statistics*, 2:637–653, 2010.

J. E. Heffernan and J. A. Tawn. A conditional approach for multivariate extreme values. *J. R. Statist. Soc. B*, 66:497, 2004.

A. W. Ledford and J. A. Tawn. Modelling dependence within joint tail regions. *J. R. Statist. Soc. B*, 59:475–499, 1997.

B. Nasri, S. El Adlouni, and T. B. M. J. Ouarda. Bayesian estimation for GEV B-Spline model. *Open Journal of Statistics*, 3: 118–128, 2013.

B. Oumow, M. de Carvalho, and A. C. Davison. Bayesian P-spline mixture modeling of extreme forest temperatures. Available at www.mat.puc.cl/~mdecarvalho, 2012.

D.T. Reeve, D. Randell, K.C. Ewans, and P. Jonathan. Accommodating measurement scale uncertainty in extreme value analysis of North Sea storm severity. *Ocean Eng.*, 53:164–176, 2012.

C. Scarrott and A. MacDonald. A review of extreme value threshold estimation and uncertainty quantification. *REVSTAT - Statistical Journal*, 10:33–60, 2012.

J.L. Wadsworth and J.A. Tawn. Dependence modelling for spatial extremes. *Biometrika*, 99:253–272, 2012.