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Motivation

Rational design an assessment of marine structures:

Reducing bias and uncertainty in estimation of structural reliability
Improved understanding and communication of risk

For new (e.g. floating) and existing (e.g. steel and concrete) structures
Climate change

Whole-basin analysis: non-stationary analysis for 1000s of locations
with covariates

Other applied fields for extremes in industry:

Corrosion and fouling
Economics and finance
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Australian North West Shelf

Philip Jonathan (Shell) Non-stationary extremes 5 / 33



Australian North West Shelf

Model storm peak significant wave height HS

Wave climate is dominated by westerly monsoonal swell and
tropical cyclones

Cyclones originate from Eastern Indian Ocean, Timor and Arafura Sea

Sample of hindcast storms for period 1970-2007

33× 33 rectangular spatial grid over 4o × 4o longitude-latitude domain

Spatial and directional variability in extremes present

Marginal spatio-directional model
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Cyclone Narelle January 2013: spatio-directional
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Cyclone Narelle January 2013: cyclone track
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Storm peak HS by direction for all locations
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Quantiles of storm peak HS spatially for all directions
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Extreme value analysis: challenges

Covariates and non-stationarity:

Location, direction, season, time, water depth, ...
Multiple / multidimensional covariates in practice

Cluster dependence:

Same events observed at many locations (pooling)
Dependence in time (Chavez-Demoulin and Davison 2012)

Scale effects:

Modelling X or f (X )? (Reeve et al. 2012)

Threshold estimation:

Scarrott and MacDonald [2012]

Parameter estimation

Measurement issues:

Field measurement uncertainty greatest for extreme values
Hindcast data are simulations based on pragmatic physics, calibrated to
historical observation
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Extreme value analysis: multivariate challenges

Componentwise maxima:
⇔ max-stability ⇔ multivariate regular variation
Assumes all components extreme
⇒ Perfect independence or asymptotic dependence only
Composite likelihood for spatial extremes (Davison et al. 2012)

Extremal dependence: (Ledford and Tawn 1997)
Assumes regular variation of joint survivor function
Gives more general forms of extremal dependence
⇒ Asymptotic dependence, asymptotic independence (with +ve, -ve
association)
Hybrid spatial dependence model (Wadsworth and Tawn 2012)

Conditional extremes: (Heffernan and Tawn 2004)
Assumes, given one variable being extreme, convergence of distribution
of remaining variables
Allows some variables not to be extreme
Not equivalent to extremal dependence

Application:
... a huge gap in the theory and practice of multivariate extremes ...
(Beirlant et al. 2004)
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Model components

Sample {żi}ṅi=1 of ṅ storm peak significant wave heights observed at
locations {ẋi , ẏi}ṅi=1 with storm peak directions {θ̇i}ṅi=1

Model components:
1 Threshold function φ above which observations ż are assumed to be

extreme estimated using quantile regression
2 Rate of occurrence of threshold exceedances modelled using Poisson

model with rate ρ(
M
= ρ(θ, x , y))

3 Size of occurrence of threshold exceedance using generalised Pareto
(GP) model with shape and scale parameters ξ and σ
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Model components

Rate of occurrence and size of threshold exceedance functionally
independent (Chavez-Demoulin and Davison 2005)

Equivalent to non-homogeneous Poisson point process model (Dixon
et al. 1998)

Smooth functions of covariates estimated using penalised B-splines
(Eilers and Marx 2010)

Slick linear algebra (c.f. generalised linear array models, Currie et al.
2006)

∼ 4× 33× 33× 32 ∼ 105 parameters to estimate

Computational efficiency essential
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Penalised B-splines

Physical considerations suggest model parameters φ, ρ, ξ and σ vary
smoothly with covariates θ, x , y

Values of (η =)φ, ρ, ξ and σ all take the form:

η = Bβη

for B-spline basis matrix B (defined on index set of covariate values)
and some βη to be estimated

Multidimensional basis matrix B formulated using Kronecker products
of marginal basis matrices:

B = Bθ ⊗ Bx ⊗ By

Roughness Rη defined as:

Rη = β′ηPβη

where effect of P is to difference neighbouring values of βη
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Penalised B-splines

Wrapped bases for periodic
covariates (seasonal, direction)

Multidimensional bases easily
constructed. Problem size
sometimes prohibitive

Parameter smoothness
controlled by roughness
coefficient λ: cross validation
or similar chooses λ optimally
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Quantile regression model for extreme value threshold

Estimate smooth quantile φ(θ, x , y ; τ) for non-exceedance probability
τ of z (storm peak HS) using quantile regression by minimising
penalised criterion `∗φ with respect to basis parameters:

`∗φ = `φ + λφRφ

`φ = {τ
n∑

ri≥0

|ri |+ (1− τ)
n∑

ri<0

|ri |}

for ri = zi − φ(θi , xi , yi ; τ) for i = 1, 2, ..., n, and roughness Rφ
controlled by roughness coefficient λφ

(Non-crossing) quantile regression formulated as linear programme
(Bollaerts et al. 2006)
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Spatio-directional 50% quantile threshold

lhs: direction of highest threshold per location
rhs: spatial threshold for 8 (semi-) cardinal directions
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Poisson model for rate of threshold exceedance

Poisson model for rate of occurrence of threshold exceedance
estimated by minimising roughness penalised log likelihood:

`∗ρ = `ρ + λρRρ

(Negative) penalised Poisson log-likelihood (and approximation):

`ρ = −
n∑

i=1

log ρ(θi , xi , yi ) +

∫
ρ(θ, x , y)dθdxdy

ˆ̀
ρ = −

m∑
j=1

cj log ρ(j∆) + ∆
m∑
j=1

ρ(j∆)

{cj}mj=1 counts of threshold exceedances on index set of m (>> 1)
bins partitioning covariate domain into intervals of volume ∆

λρ estimated using cross validation or similar (e.g. AIC)
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Spatio-directional rate of threshold exceedances

lhs: direction of highest rate per location
rhs: spatial rate for 8 (semi-) cardinal directions
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Generalised Pareto model for size of threshold exceedance

Generalise Pareto model for size of threshold exceedance estimated by
minimising roughness penalised log-likelihood:

`∗ξ,σ = `ξ,σ + λξRξ + λσRσ

(Negative) conditional generalised Pareto log-likelihood:

`ξ,σ =
n∑

i=1

log σi +
1

ξi
log(1 +

ξi
σi

(zi − φi ))

Parameters: shape ξ, scale σ

Threshold φ set prior to estimation

λξ and λσ estimated using cross validation or similar. In practice set
λξ = κλσ for fixed κ
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Return values

Estimation of return values by simulation under model

Spatio-directional octants
Sample number of events in period, directions of events, sizes of events

Alternative: closed form function of parameters

Return value zT of storm peak significant wave height corresponding to
return period T (years) evaluated from estimates for φ, ρ, ξ and σ:

zT = φ− σ

ξ
(1 +

1

ρ
(log(1− 1

T
))−ξ)

Interpretation problematic

z100 corresponds to 100–year return value, denoted HS100
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Spatio-directional 100-year return value HS100 from simulation

lhs: omni-directional spatial; rhs: directional octant spatial
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Current developments

Non-stationary marginal extremes

Spatio-directional, seasonal-directional and spatio-seasonal-directional

Computational efficiency

Sparse and slick matrix manipulations (e.g. linear array methods)
Parallel implementation

Incorporating uncertainty

Bootstrapping including threshold uncertainty
Bayesian penalised B-splines(Nasri et al. 2013, Oumow et al. 2012)

Spatial dependence

Composite likelihood: model componentwise maxima
Censored likelihood: block maxima → threshold exceedances
Hybrid model: full range of extremal dependence

Interpretation within structural design framework

Non-stationary conditional extremes
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Spatio-directional 100-year HS for GoM

lhs: omni-directional spatial; rhs: spatial for 8 (semi-) cardinal directions
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Seasonal-directional 100-year HS for North Sea

lhs: omni-directional seasonal; rhs: seasonal for 8 directional sectors
bootstrap uncertainty intervals encompass all analysis steps
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Seasonal-directional HS diagnostics

For period of data, comparison of actual (red) and multiple simulated
(omni-) directional cumulative distribution functions

Philip Jonathan (Shell) Non-stationary extremes 30 / 33



Directional conditional extremes of TP given 100-year
HS for North Sea

Omni-directional and sector marginal distributions of 100-year TP

independent of 100-year HS
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Directional conditional extremes of TP given 100-year
HS for North Sea

Omni-directional and sector conditional distributions of TP given
100-year HS using extension of model of Heffernan & Tawn
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