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Motivation

@ Rational design an assessment of marine structures:

e Reducing bias and uncertainty in estimation of structural reliability
e Improved understanding and communication of risk

For new (e.g. floating) and existing (e.g. steel and concrete) structures
Climate change

Whole-basin analysis: non-stationary analysis for 1000s of locations
with covariates

@ Other applied fields for extremes in industry:

e Corrosion and fouling
e Economics and finance
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Australian North West Shelf
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Australian North West Shelf

Model storm peak significant wave height Hs

@ Wave climate is dominated by westerly monsoonal swell and
tropical cyclones

Cyclones originate from Eastern Indian Ocean, Timor and Arafura Sea

Sample of hindcast storms for period 1970-2007
33 x 33 rectangular spatial grid over 4° x 4° longitude-latitude domain

Spatial and directional variability in extremes present

Marginal spatio-directional model
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Cyclone Narelle January 2013: spatio-directional
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Cyclone Narelle January 2013: cyclone track
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| reCtlon for all locations

Storm peak Hs by d

Raw data: 6156 events
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Quantiles of storm peak Hs spatially o i diections
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Extreme value analysis: challenges

o Covariates and non-stationarity:

e Location, direction, season, time, water depth, ...
o Multiple / multidimensional covariates in practice

Cluster dependence:

o Same events observed at many locations (pooling)
o Dependence in time (Chavez-Demoulin and Davison 2012)

Scale effects:

o Modelling X or f(X)? (Reeve et al. 2012)
Threshold estimation:

e Scarrott and MacDonald [2012]

Parameter estimation

(]

Measurement issues:

o Field measurement uncertainty greatest for extreme values
o Hindcast data are simulations based on pragmatic physics, calibrated to
historical observation
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Extreme value analysis: multivariate challenges

o Componentwise maxima:
e < max-stability < multivariate regular variation
e Assumes all components extreme
e = Perfect independence or asymptotic dependence only
o Composite likelihood for spatial extremes (Davison et al. 2012)
o Extremal dependence: (Ledford and Tawn 1997)
o Assumes regular variation of joint survivor function
o Gives more general forms of extremal dependence
e = Asymptotic dependence, asymptotic independence (with +ve, -ve
association)
o Hybrid spatial dependence model (Wadsworth and Tawn 2012)
e Conditional extremes: (Heffernan and Tawn 2004)
e Assumes, given one variable being extreme, convergence of distribution
of remaining variables
o Allows some variables not to be extreme
o Not equivalent to extremal dependence
o Application:
e ... a huge gap in the theory and practice of multivariate extremes ...
(Beirlant et al. 2004)
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Model components

e Sample {z}7_, of /1 storm peak significant wave heights observed at
locations {X;, y;}7_, with storm peak directions {#;}7_,

@ Model components:

@ Threshold function ¢ above which observations z are assumed to be
extreme estimated using quantile regression

© Rate of occurrence of threshold exceedances modelled using Poisson
model with rate p( £ p(6, x, y))

© Size of occurrence of threshold exceedance using generalised Pareto
(GP) model with shape and scale parameters £ and o
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Model components

@ Rate of occurrence and size of threshold exceedance functionally
independent (Chavez-Demoulin and Davison 2005)

o Equivalent to non-homogeneous Poisson point process model (Dixon
et al. 1998)

@ Smooth functions of covariates estimated using penalised B-splines
(Eilers and Marx 2010)

o Slick linear algebra (c.f. generalised linear array models, Currie et al.
2006)

@ ~ 4 x 33 x 33 x 32 ~ 10° parameters to estimate
o Computational efficiency essential
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Penalised B-splines

@ Physical considerations suggest model parameters ¢, p, £ and o vary
smoothly with covariates 6, x, y
e Values of (n =)o, p, & and o all take the form:

77:5/877

for B-spline basis matrix B (defined on index set of covariate values)
and some 3, to be estimated

@ Multidimensional basis matrix B formulated using Kronecker products
of marginal basis matrices:

B=By®B«®B,
@ Roughness R, defined as:
R, = 57/7’3577
where effect of P is to difference neighbouring values of 3,
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Penalised B-splines

e Wrapped bases for periodic
covariates (seasonal, direction) 0s

o Multidimensional bases easily
constructed. Problem size

sometimes prohibitive

@ Parameter smoothness
controlled by roughness

coefficient A: cross validation
or similar chooses A\ optimally
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Quantile regression model for extreme value threshold

e Estimate smooth quantile ¢(0, x, y; 7) for non-exceedance probability
7 of z (storm peak Hs) using quantile regression by minimising
penalised criterion 62 with respect to basis parameters:

f;; = £¢ + )\¢R¢

{r) i+ @@= Inl}

>0 ri<0

ly

for rj = z; — ¢(0;, i, yi; T) for i = 1,2, ..., n, and roughness R,
controlled by roughness coefficient Ay

@ (Non-crossing) quantile regression formulated as linear programme
(Bollaerts et al. 2006)
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Spatio-directional 50% quantile threshold
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lhs: direction of highest threshold per location
rhs: spatial threshold for 8 (semi-) cardinal directions

Philip Jonathan (Shell)

Non-stationary extremes

20 / 33



Poisson model for rate of threshold exceedance

@ Poisson model for rate of occurrence of threshold exceedance
estimated by minimising roughness penalised log likelihood:

U =1L+ 2Ry
o (Negative) penalised Poisson log-likelihood (and approximation):
n
by = _Zlogp(eiaXth)+/p(9,X,y)d9dXdy
i=1

= clogp(jA) + A p(jA)

j=1 j=1

>

~
i)
Il

o {¢j}T; counts of threshold exceedances on index set of m (>> 1)
bins partitioning covariate domain into intervals of volume A

@ )\, estimated using cross validation or similar (e.g. AlC)
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Spatio-directional rate of threshold exceedances
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Ihs: direction of highest rate per location
rhs: spatial rate for 8 (semi-) cardinal directions
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Generalised Pareto model for size of threshold exceedance

Generalise Pareto model for size of threshold exceedance estimated by
minimising roughness penalised log-likelihood:

62,0 = 65,0 + )\gRg + Ao Ry
@ (Negative) conditional generalised Pareto log-likelihood:

S

le.o Zloga, Iog( Slzi—a)

Parameters: shape &, scale o

Threshold ¢ set prior to estimation

A¢ and A, estimated using cross validation or similar. In practice set
Ae = KA for fixed K

Philip Jonathan (Shell) Non-stationary extremes 23 /33



Return values

o Estimation of return values by simulation under model

o Spatio-directional octants
o Sample number of events in period, directions of events, sizes of events

o Alternative: closed form function of parameters

e Return value z1 of storm peak significant wave height corresponding to
return period T (years) evaluated from estimates for ¢, p,¢ and o

o 1 1,._
zr=¢— E(l + ;(Iog(l - 7)) °)

o Interpretation problematic

@ zj90 corresponds to 100—year return value, denoted Hsigg
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Spatio-directional 100-year return value Hs1gg som smuation
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Current developments

@ Non-stationary marginal extremes
o Spatio-directional, seasonal-directional and spatio-seasonal-directional

Computational efficiency
o Sparse and slick matrix manipulations (e.g. linear array methods)
o Parallel implementation

@ Incorporating uncertainty

o Bootstrapping including threshold uncertainty
o Bayesian penalised B-splines(Nasri et al. 2013, Oumow et al. 2012)

(]

Spatial dependence
o Composite likelihood: model componentwise maxima
o Censored likelihood: block maxima — threshold exceedances
e Hybrid model: full range of extremal dependence

Interpretation within structural design framework

Non-stationary conditional extremes
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Seasonal-directional 100-year Hs for North Sea
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Ilhs: omni-directional seasonal; rhs: seasonal for 8 directional sectors
bootstrap uncertainty intervals encompass all analysis steps
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Seasonal-directional Hs diagnostics
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For period of data, comparison of actual (red) and multiple simulated
(omni-) directional cumulative distribution functions
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Directional conditional extremes of Tp given 100-year

Hs for North Sea

22.5,22.5)
22.5,67.5)
67.5,112.5)
112.5,157.5)

202.5,247.5)

292.5,337.5)

ornrn

—
-l
il
l
[157.5,202.5) |
[
[2475,292.5)
[

Empirical cumulative distribution function

Omni-directional and sector marginal distributions of 100-year Tp
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Directional conditional extremes of Tp given 100-year

Hs for North Sea

Omni-directional and sector conditional distributions of Tp given
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