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recent advances i ave made it

possible to redress this

to describe a novel methodology that adds to standard spectral wave
model output - accurate forecasts of

(i) the spectral density of breaking crest length per unit area and
(ii) the associated breaking strength

We did this initially for the dominant wind waves and have now
extended it across the full spectrum
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St Jude's Storm shutdown: Eurostar and Monday morning train
services cancelled across south as coast is lashed by 25ft waves

+ Amendments and cancellations on First Capital Connect, Southeastern, Greater Anglia and Stansted Express
+ Also disruption on East Coast, c2c, First Great Western, Southern, Gatwick Express and South West Trains
« Ferries from Poole and Weymouth to Guernsey & Jersey cancelled and hovercrafts to Isle of Wight suspended

+ About 60 flights cancelled at London Heathrow Airport tomorrow but none yet at Gatwick, Stansted and Luton

« Forecasters warn houses face damage, trees falling and power cuts in biggest storm to hit Britain in a decade

+ Wales and South West England will be hit first early tomorrow morning with winds of up to 90mph expected ~
« Boy, 14, believed to have drowned today after swimming with friends in waves off Newhaven in East Sussex
Canoeist dies after being pulled from swollen River Tees near Barnard Castle, County Durham, after capsizing
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where

o F=F(k,d) is the directional wave spectrum

* C,Is the group velocity

¢S, =S, +S, +SIs the total source term.

e S, Is the atmospheric input spectral source term

e S  is the nonlinear spectral transfer source term representing nonlinear
wave-wave interactions within the spectrum

e S, Is the spectral dissipation rate here taken as due primarily to wave
breaking



Saturat

e based on trea es a low
power of the spe late observed
threshold behavio

Sgs(k,8) =[CL*D*(G -5 )/G7)% +Cp * D*Erg ¥k 1(5/0) 0F(k, 0)
=« 4

‘local Sy’ ‘non-local S’

This formulation uses
e normalized azimuthally-integrated saturation: k* F (k)/@ (k) = (2n)* f ® F(f) / 292

e measured threshold of the normalized spectral saturation (Banner et al., JPO,
2002) with a1=2

e tail exponent a2z = 4 to match dissipation to input behavior in the spectral tail
e nonlocal dissipation rate component

e coefficient D for the local Sds: non-dimensional and linear in the wind speed to
match to the wind input term.

e C1 and C2 constants



Modified Jansen Wind Input
S, (k,0) = e B(k,0)m(ur (k) cosd /c)* *E(k,0)

B(k,0) = J, u(In(n))* /x* BUGEE J,=1.6 (Janssen (1991) used

~ 0.01u?
R [J1-Cy(ty, /1)




A(c) is the spectral d
I1(c) is the spectral density

The breaking probability P, (c) for wa

passage rate of breaking wave crests

passage rate of wave crests

A(c): spectral density of breaking wave crest length per unit
area with velocities in the range (c, c+dc) (Phillips,1985)




The

o(k) = o(k)/ < 0(k) >

where o(K) i

o(k) = K*®D(k)

= (2n)*PG(f)/2g2

and <0(k)> is the mean spectral spreading width given by

<0(k)>= j (0-0)F(k,0)kdo / j F(k,0)kdo

where E Is the mean wave direction, and ®(k), G(f) and F(k,0) are,
respectively, the spectra of wave height as a function of scalar wavenumber,
frequency and vector wavenumber.
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I:)rbr (o) = H(G_GT) *Oy, * (G_GT)

- - ~ ~ \l0
b, (0) = H(c —o7) *Cy, *(G_GT)

Si2(c) dc=b g *c’A(c) dc

A(c) =S (€)*g*/(b* )
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Edson et al, Age .vs. U10
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Model Fore for Fetch
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Speactral Peak Breaking Probability
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Model Fore
For multiple

Spectral Peak Breaking Strength [B]
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Model Nave Age.

For multip s/ to 80 m/s.
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Model Forece m/s & 48 m/s.

Breaking strength .vs. Frequency, U10= 12
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Model Fore

m/s & 48m/s.

Lamda vs C, U10= 12
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Modeled Drag Coefficient x 10°

35

W
()
l

Latitude

N
7

260 265 270

275

Longitude

280



of Juan de Fuca: Experimen
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Significant Wave Height versus Fetch
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Integrated Source-term, wind = 16.4175 m/s
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Normalised Saturation
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e our fra
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density per u
spectral wave m

spectral
tandard

* it provides accurate predictions for the limited breaking data
available in developing and mature wind seas

« further validation against data will be made as suitable new
data sets become available.

* it has been added to existing spectral wave forecasting
models. Upgrading the form of the DIA is desirable.
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